Hybrid recommendation approaches
Hybrid recommender systems

Hybrid: combinations of various inputs and/or composition of different mechanism

Collaborative: "Tell me what's popular among my peers"
Content-based: "Show me more of the same what I've liked"
Knowledge-based: "Tell me what fits based on my needs"
Hybrid recommender systems

- All three base techniques are naturally incorporated by a good sales assistant (at different stages of the sales act) but have their shortcomings
 - For instance, cold start problems

- Idea of crossing two (or more) species/implementation
 - *hybrida* [lat.]: denotes an object made by combining two different elements
 - Avoid some of the shortcomings
 - Reach desirable properties not (or only inconsistently) present in parent individuals

- Different hybridization designs
 - Parallel use of several systems
 - Monolithic exploiting different features
 - Pipelined invocation of different systems
Monolithic hybridization design

- Only a single recommendation component

- Hybridization is "virtual" in the sense that
 - Features/knowledge sources of different paradigms are combined
Monolithic hybridization designs: Feature combination

- Combination of several knowledge sources
 - E.g.: Ratings and user demographics or explicit requirements and needs used for similarity computation

- "Hybrid" content features:
 - Social features: Movies liked by user
 - Content features: Comedies liked by user, dramas liked by user
 - Hybrid features: user likes many movies that are comedies, ...

 - “the common knowledge engineering effort that involves inventing good features to enable successful learning” [Chumki Basuet al. 1998]
Monolithic hybridization designs: Feature augmentation

- **Content-boosted collaborative filtering [Prem Melville et al. 2002]**
 - Based on content features additional ratings are created
 - E.g. Alice likes Items 1 and 3 (unary ratings)
 - Item7 is similar to 1 and 3 by a degree of 0.75
 - Thus Alice likes Item7 by 0.75
 - Item matrices become less sparse
 - Significance weighting and adjustment factors
 - Peers with more co-rated items are more important
 - Higher confidence in content-based prediction, if higher number of own ratings

- **Recommendation of research papers [Roberto Torres et al. 2004]**
 - Citations interpreted as collaborative recommendations
Parallelized hybridization design

- Output of several existing implementations combined
- Least invasive design
- Some weighting or voting scheme
 - Weights can be learned dynamically
 - Extreme case of dynamic weighting is switching
Parallelized hybridization design: Weighted

- Compute weighted sum:

\[
rec_{\text{weighted}}(u,i) = \sum_{k=1}^{n} \beta_k \times rec_k(u,i)
\]

<table>
<thead>
<tr>
<th>Recommender 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item1 0.5</td>
<td>1</td>
</tr>
<tr>
<td>Item2 0</td>
<td></td>
</tr>
<tr>
<td>Item3 0.3</td>
<td>2</td>
</tr>
<tr>
<td>Item4 0.1</td>
<td>3</td>
</tr>
<tr>
<td>Item5 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommender 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item1 0.8</td>
<td>2</td>
</tr>
<tr>
<td>Item2 0.9</td>
<td>1</td>
</tr>
<tr>
<td>Item3 0.4</td>
<td>3</td>
</tr>
<tr>
<td>Item4 0</td>
<td></td>
</tr>
<tr>
<td>Item5 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommender weighted(0.5:0.5)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item1 0.65</td>
<td>1</td>
</tr>
<tr>
<td>Item2 0.45</td>
<td>2</td>
</tr>
<tr>
<td>Item3 0.35</td>
<td>3</td>
</tr>
<tr>
<td>Item4 0.05</td>
<td>4</td>
</tr>
<tr>
<td>Item5 0.00</td>
<td></td>
</tr>
</tbody>
</table>
Parallelized hybridization design: Weighted

- **BUT, how to derive weights?**
 - Estimate, e.g. by empirical bootstrapping
 - Dynamic adjustment of weights

- **Empirical bootstrapping**
 - Historic data is needed
 - Compute different weightings
 - Decide which one does best

- **Dynamic adjustment of weights**
 - Start with for instance uniform weight distribution
 - For each user adapt weights to minimize error of prediction

Markus Zanker, University Klagenfurt, markus.zanker@uni-klu.ac.at
Parallelized hybridization design: Weighted

- Let's assume Alice actually bought/clicked on items 1 and 4
 - Identify weighting that minimizes Mean Absolute Error (MAE)

<table>
<thead>
<tr>
<th>Absolute errors and MAE</th>
<th>Beta1</th>
<th>Beta2</th>
<th>rec1</th>
<th>rec2</th>
<th>error</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>0.9</td>
<td>0.5</td>
<td>0.8</td>
<td>0.23</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>Item4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.7</td>
<td>0.5</td>
<td>0.8</td>
<td>0.29</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>Item4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.8</td>
<td>0.35</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Item4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.41</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Item4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.1</td>
<td>0.5</td>
<td>0.8</td>
<td>0.47</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>Item4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAE improves as rec2 is weighted more strongly

\[
MAE = \frac{\sum_{u \in R} \sum_{k=1}^{n} \beta_k \times |rec_k(u,i) - r_i|}{|R|}
\]
Parallelized hybridization design: Weighted

- BUT: didn't rec1 actually rank items 1 and 4 higher?

<table>
<thead>
<tr>
<th>Recommender 1</th>
<th>Recommender 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item1</td>
<td>0.5</td>
</tr>
<tr>
<td>Item2</td>
<td>0</td>
</tr>
<tr>
<td>Item3</td>
<td>0.3</td>
</tr>
<tr>
<td>Item4</td>
<td>0.1</td>
</tr>
<tr>
<td>Item5</td>
<td>0</td>
</tr>
</tbody>
</table>

- Be careful when weighting!
 - Recommenders need to assign comparable scores over all users and items
 - Some score transformation could be necessary
 - Stable weights require several user ratings
Parallelized hybridization design: Switching

- Requires an oracle that decides on recommender

\[\exists 1 \leq k \leq n : nrec_{switching}(u,i) = rec_k(u,i) \]

- Special case of dynamic weights (all except one Beta is 0)

- Example:
 - Ordering on recommenders and switch based on some quality criteria
 - E.g. if too few ratings in the system use knowledge-based, else collaborative
 - More complex conditions based on contextual parameters, apply classification techniques
Parallelized hybridization design: Mixed

- Combines the results of different recommender systems at the level of user interface
- Results of different techniques are presented together
- Recommendation result for user u and item i is the set of tuples $<\text{score}, k>$ for each of its n constituting recommenders rec_k

$$rec_{\text{mixed}} = \bigcup_{k=1}^{n} \langle rec_k(u, i), k \rangle$$
Pipelined hybridization designs

- One recommender system pre-processes some input for the subsequent one
 - Cascade
 - Meta-level

- Refinement of recommendation lists (cascade)

- Learning of model (e.g. collaborative knowledge-based meta-level)
Pipelined hybridization designs: Cascade

- Successor's recommendations are restricted by predecessor

\[rec_{\text{cascade}}(u, i) = rec_{\text{n}}(u, i) \]

- Where for all \(k > 1 \)

\[rec_k(u, i) = \begin{cases}
rec_k(u, i) & : rec_{k-1}(u, i) \neq 0 \\
0 & : \text{otherwise}
\end{cases} \]

- Subsequent recommender may not introduce additional items

- Thus produces very precise results
Pipelined hybridization designs: Cascade

- Recommendation list is continually reduced
- First recommender excludes items
 - Remove absolute no-go items (e.g. knowledge-based)
- Second recommender assigns score
 - Ordering and refinement (e.g. collaborative)
Pipelined hybridization designs: Cascade

<table>
<thead>
<tr>
<th>Recommender 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item1</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Item2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Item3</td>
<td>0.3</td>
<td>2</td>
</tr>
<tr>
<td>Item4</td>
<td>0.1</td>
<td>3</td>
</tr>
<tr>
<td>Item5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommender 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item1</td>
<td>0.8</td>
<td>2</td>
</tr>
<tr>
<td>Item2</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>Item3</td>
<td>0.4</td>
<td>3</td>
</tr>
<tr>
<td>Item4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Item5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommender 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item1</td>
<td>0.80</td>
<td>1</td>
</tr>
<tr>
<td>Item2</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Item3</td>
<td>0.40</td>
<td>2</td>
</tr>
<tr>
<td>Item4</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Item5</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Removing no-go items

Ordering and refinement
Pipelined hybridization designs: Meta-level

- Successor exploits a model delta built by predecessor

\[rec_{meta-level}(u, i) = rec_n(u, i, \Delta_{rec_{n-1}}) \]

- Examples:
 - Fab:
 - Online news domain
 - CB recommender builds user models based on weighted term vectors
 - CF identifies similar peers based on these user models but makes recommendations based on ratings
 - Collaborative constraint-based meta-level RS
 - Collaborative filtering learns a constraint base
 - Knowledge-based RS computes recommendations
Limitations of hybridization strategies

- Only few works that compare strategies from the meta-perspective
 - Like for instance, [Robin Burke 2002]
 - Most datasets do not allow to compare different recommendation paradigms
 - i.e. ratings, requirements, item features, domain knowledge, critiques rarely available in a single dataset
 - Thus few conclusions that are supported by empirical findings
 - Monolithic: some preprocessing effort traded-in for more knowledge included
 - Parallel: requires careful matching of scores from different predictors
 - Pipelined: works well for two antithetic approaches

- Netflix competition – "stacking" recommender systems
 - Weighted design based on >100 predictors – recommendation functions
 - Adaptive switching of weights based on user model, context and meta-features
Literature

