Collaborative Filtering
Agenda

- **Collaborative Filtering (CF)**
 - Pure CF approaches
 - User-based nearest-neighbor
 - The Pearson Correlation similarity measure
 - Memory-based and model-based approaches
 - Item-based nearest-neighbor
 - The cosine similarity measure
 - Data sparsity problems
 - Recent methods (SVD, Association Rule Mining, Slope One, RF-Rec, ...)
 - The Google News personalization engine
 - Discussion and summary
 - Literature
Collaborative Filtering (CF)

- The most prominent approach to generate recommendations
 - used by large, commercial e-commerce sites
 - well-understood, various algorithms and variations exist
 - applicable in many domains (book, movies, DVDs, ..)

- Approach
 - use the "wisdom of the crowd" to recommend items

- Basic assumption and idea
 - Users give ratings to catalog items (implicitly or explicitly)
 - Customers who had similar tastes in the past, will have similar tastes in the future
Pure CF Approaches

- **Input**
 - Only a matrix of given user–item ratings

- **Output types**
 - A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
 - A top-N list of recommended items
User-based nearest-neighbor collaborative filtering (1)

- **The basic technique**
 - Given an "active user" (Alice) and an item i not yet seen by Alice
 - find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have rated item i
 - use, e.g. the average of their ratings to predict, if Alice will like item i
 - do this for all items Alice has not seen and recommend the best-rated

- **Basic assumption and idea**
 - If users had similar tastes in the past they will have similar tastes in the future
 - User preferences remain stable and consistent over time
User-based nearest-neighbor collaborative filtering (2)

- Example
 - A database of ratings of the current user, Alice, and some other users is given:

<table>
<thead>
<tr>
<th></th>
<th>Item1</th>
<th>Item2</th>
<th>Item3</th>
<th>Item4</th>
<th>Item5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>User1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- Determine whether Alice will like or dislike Item5, which Alice has not yet rated or seen
User-based nearest-neighbor collaborative filtering (3)

- Some first questions
 - How do we measure similarity?
 - How many neighbors should we consider?
 - How do we generate a prediction from the neighbors' ratings?

<table>
<thead>
<tr>
<th></th>
<th>Item1</th>
<th>Item2</th>
<th>Item3</th>
<th>Item4</th>
<th>Item5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>User1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Measuring user similarity (1)

- A popular similarity measure in user-based CF: Pearson correlation

\[a, b : \text{users} \]
\[r_{a,p} : \text{rating of user } a \text{ for item } p \]
\[P : \text{set of items, rated both by } a \text{ and } b \]
- Possible similarity values between \(-1\) and 1

\[
sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}
\]
Measuring user similarity (2)

- A popular similarity measure in user-based CF: Pearson correlation

 \[a, b : \text{users} \]

 \[r_{a,p} : \text{rating of user } a \text{ for item } p \]

 \[P : \text{set of items, rated both by } a \text{ and } b \]

 - Possible similarity values between \(-1\) and \(1\)

<table>
<thead>
<tr>
<th></th>
<th>Item1</th>
<th>Item2</th>
<th>Item3</th>
<th>Item4</th>
<th>Item5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>User1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

sim = 0.85
sim = 0.00
sim = 0.70
sim = -0.79
Punkt statt Komma als Trennzeichen.
Zeynep; 16.08.2011
Pearson correlation

- Takes differences in rating behavior into account

- Works well in usual domains, compared with alternative measures
 - such as cosine similarity
Making predictions

- A common prediction function:

$$\text{pred}(a, p) = \frac{\sum_{b \in N} \text{sim}(a, b) \times (r_{b,p} - \overline{r}_b)}{\sum_{b \in N} \text{sim}(a, b)}$$

- Calculate, whether the neighbors' ratings for the unseen item i are higher or lower than their average

- Combine the rating differences – use the similarity with a as a weight

- Add/subtract the neighbors' bias from the active user's average and use this as a prediction
Improving the metrics / prediction function

- Not all neighbor ratings might be equally "valuable"
 - Agreement on commonly liked items is not so informative as agreement on controversial items
 - **Possible solution**: Give more weight to items that have a higher variance

- **Value of number of co-rated items**
 - Use "significance weighting", by e.g., linearly reducing the weight when the number of co-rated items is low

- **Case amplification**
 - Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity value is close to 1.

- **Neighborhood selection**
 - Use similarity threshold or fixed number of neighbors
Memory-based and model-based approaches

- **User-based CF is said to be "memory-based"**
 - the rating matrix is directly used to find neighbors / make predictions
 - does not scale for most real-world scenarios
 - large e-commerce sites have tens of millions of customers and millions of items

- **Model-based approaches**
 - based on an offline pre-processing or "model-learning" phase
 - at run-time, only the learned model is used to make predictions
 - models are updated / re-trained periodically
 - large variety of techniques used
 - model-building and updating can be computationally expensive
 - *item*-based CF is an example for model-based approaches
Item-based collaborative filtering

- **Basic idea:**
 - Use the similarity between items (and not users) to make predictions

- **Example:**
 - Look for items that are similar to Item5
 - Take Alice's ratings for these items to predict the rating for Item5

<table>
<thead>
<tr>
<th></th>
<th>Item1</th>
<th>Item2</th>
<th>Item3</th>
<th>Item4</th>
<th>Item5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>User1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
The cosine similarity measure

- Produces better results in item-to-item filtering
- Ratings are seen as vector in n-dimensional space
- Similarity is calculated based on the angle between the vectors

\[
sim(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}
\]

- Adjusted cosine similarity
 - take average user ratings into account, transform the original ratings
 - \(U\): set of users who have rated both items \(a\) and \(b\)

\[
sim(\vec{a}, \vec{b}) = \frac{\sum_{u \in U} (r_{u,a} - \bar{r}_u)(r_{u,b} - \bar{r}_u)}{\sqrt{\sum_{u \in U} (r_{u,a} - \bar{r}_u)^2} \sqrt{\sum_{u \in U} (r_{u,b} - \bar{r}_u)^2}}
\]
Making predictions

- A common prediction function:

\[\text{pred}(u,p) = \frac{\sum_{i \in \text{ratedItem}(u)} \text{sim}(i,p) \times r_{u,i}}{\sum_{i \in \text{ratedItem}(u)} \text{sim}(i,p)} \]

- Neighborhood size is typically also limited to a specific size
- Not all neighbors are taken into account for the prediction
- An analysis of the MovieLens dataset indicates that "in most real-world situations, a neighborhood of 20 to 50 neighbors seems reasonable" (Herlocker et al. 2002)
Pre-processing for item-based filtering

- **Item-based filtering does not solve the scalability problem itself**
- **Pre-processing approach by Amazon.com (in 2003)**
 - Calculate all pair-wise item similarities in advance
 - The neighborhood to be used at run-time is typically rather small, because only items are taken into account which the user has rated
 - Item similarities are supposed to be more stable than user similarities
- **Memory requirements**
 - Up to N^2 pair-wise similarities to be memorized ($N =$ number of items) in theory
 - In practice, this is significantly lower (items with no co-ratings)
 - Further reductions possible
 - Minimum threshold for co-ratings
 - Limit the neighborhood size (might affect recommendation accuracy)
More on ratings – Explicit ratings

- Probably the most precise ratings
- Most commonly used (1 to 5, 1 to 7 Likert response scales)

Research topics
- Optimal granularity of scale; indication that 10-point scale is better accepted in movie dom.
- An even more fine-grained scale was chosen in the joke recommender discussed by Goldberg et al. (2001), where a continuous scale (from −10 to +10) and a graphical input bar were used
 - No precision loss from the discretization
 - User preferences can be captured at a finer granularity
 - Users actually "like" the graphical interaction method
- Multidimensional ratings (multiple ratings per movie such as ratings for actors and sound)

Main problems
- Users not always willing to rate many items
 - Number of available ratings could be too small → sparse rating matrices → poor recommendation quality
- How to stimulate users to rate more items?
More on ratings – Implicit ratings

- Typically collected by the web shop or application in which the recommender system is embedded

- When a customer buys an item, for instance, many recommender systems interpret this behavior as a positive rating

- Clicks, page views, time spent on some page, demo downloads ...

- Implicit ratings can be collected constantly and do not require additional efforts from the side of the user

- Main problem
 - One cannot be sure whether the user behavior is correctly interpreted
 - For example, a user might not like all the books he or she has bought; the user also might have bought a book for someone else

- Implicit ratings can be used in addition to explicit ones; question of correctness of interpretation
Data sparsity problems

- Cold start problem
 - How to recommend new items? What to recommend to new users?

- Straightforward approaches
 - Ask/force users to rate a set of items
 - Use another method (e.g., content-based, demographic or simply non-personalized) in the initial phase
 - Default voting: assign default values to items that only one of the two users to be compared has rated (Breese et al. 1998)

- Alternatives
 - Use better algorithms (beyond nearest-neighbor approaches)
 - Example:
 - In nearest-neighbor approaches, the set of sufficiently similar neighbors might be too small to make good predictions
 - Assume "transitivity" of neighborhoods
Example algorithms for sparse datasets

- **Recursive CF** (Zhang and Pu 2007)
 - Assume there is a very close neighbor n of u who however has not rated the target item i yet.
 - Idea:
 - Apply CF-method recursively and predict a rating for item i for the neighbor
 - Use this predicted rating instead of the rating of a more distant direct neighbor

<table>
<thead>
<tr>
<th></th>
<th>Item1</th>
<th>Item2</th>
<th>Item3</th>
<th>Item4</th>
<th>Item5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>User1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>User2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Graph-based methods (1)

- "Spreading activation" (Huang et al. 2004)
 - Exploit the supposed "transitivity" of customer tastes and thereby augment the matrix with additional information
 - Assume that we are looking for a recommendation for User1
 - When using a standard CF approach, User2 will be considered a peer for User1 because they both bought Item2 and Item4
 - Thus Item3 will be recommended to User1 because the nearest neighbor, User2, also bought or liked it
Graph-based methods (2)

- "Spreading activation" (Huang et al. 2004)
 - In a standard user-based or item-based CF approach, paths of length 3 will be considered – that is, Item3 is relevant for User1 because there exists a three-step path (User1–Item2–User2–Item3) between them
 - Because the number of such paths of length 3 is small in sparse rating databases, the idea is to also consider longer paths (indirect associations) to compute recommendations
 - Using path length 5, for instance
Graph-based methods (3)

- "Spreading activation" (Huang et al. 2004)
 - Idea: Use paths of lengths > 3 to recommend items
 - Length 3: Recommend Item3 to User1
 - Length 5: Item1 also recommendable
More model-based approaches

- **Plethora of different techniques proposed in the last years, e.g.,**
 - Matrix factorization techniques, statistics
 - singular value decomposition, principal component analysis
 - Association rule mining
 - compare: shopping basket analysis
 - Probabilistic models
 - clustering models, Bayesian networks, probabilistic Latent Semantic Analysis
 - Various other machine learning approaches

- **Costs of pre-processing**
 - Usually not discussed
 - Incremental updates possible?
2000: *Application of Dimensionality Reduction in Recommender System*, B. Sarwar et al., WebKDD Workshop

- Basic idea: Trade more complex offline model building for faster online prediction generation
- **Singular Value Decomposition** for dimensionality reduction of rating matrices
 - Captures important factors/aspects and their weights in the data
 - factors can be genre, actors but also non-understandable ones
 - Assumption that k dimensions capture the signals and filter out noise ($K = 20$ to 100)
- **Constant time to make recommendations**
- Approach also popular in IR (Latent Semantic Indexing), data compression,...
Matrix factorization

- Informally, the SVD theorem (Golub and Kahan 1965) states that a given matrix M can be decomposed into a product of three matrices as follows

$$M = U \times \Sigma \times V^T$$

- where U and V are called left and right singular vectors and the values of the diagonal of Σ are called the singular values

- We can approximate the full matrix by observing only the most important features – those with the largest singular values

- In the example, we calculate U, V, and Σ (with the help of some linear algebra software) but retain only the two most important features by taking only the first two columns of U and V^T
Example for SVD-based recommendation

- **SVD:** \[M_k = U_k \times \sum_k \times V_k^T \]

<table>
<thead>
<tr>
<th>(U_k)</th>
<th>Dim1</th>
<th>Dim2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>0.47</td>
<td>-0.30</td>
</tr>
<tr>
<td>Bob</td>
<td>-0.44</td>
<td>0.23</td>
</tr>
<tr>
<td>Mary</td>
<td>0.70</td>
<td>-0.06</td>
</tr>
<tr>
<td>Sue</td>
<td>0.31</td>
<td>0.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(V_k^T)</th>
<th>(\text{Dim1})</th>
<th>(\text{Dim2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim1</td>
<td>-0.44</td>
<td>-0.57</td>
</tr>
<tr>
<td>Dim2</td>
<td>0.58</td>
<td>-0.66</td>
</tr>
</tbody>
</table>

\[\sum_k \]

<table>
<thead>
<tr>
<th>(\text{Dim1})</th>
<th>(\text{Dim2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim1</td>
<td>5.63</td>
</tr>
<tr>
<td>Dim2</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\hat{r}_{ui} = \bar{r}_u + U_k (Alice) \times \sum_k \times V_k^T (EPL) \]

\[= 3 + 0.84 = 3.84 \]
The projection of U and V^T in the 2 dimensional space (U_2, V_2^T)
Discussion about dimensionality reduction (Sarwar et al. 2000a)

- **Matrix factorization**
 - Generate low-rank approximation of matrix
 - Detection of latent factors
 - Projecting items and users in the same n-dimensional space

- **Prediction quality can decrease because...**
 - the original ratings are not taken into account

- **Prediction quality can increase as a consequence of...**
 - filtering out some "noise" in the data and
 - detecting nontrivial correlations in the data

- **Depends on the right choice of the amount of data reduction**
 - number of singular values in the SVD approach
 - Parameters can be determined and fine-tuned only based on experiments in a certain domain
 - Koren et al. 2009 talk about 20 to 100 factors that are derived from the rating patterns
Association rule mining

- Commonly used for shopping behavior analysis
 - aims at detection of rules such as
 "If a customer purchases beer then he also buys diapers in 70% of the cases"

- Association rule mining algorithms
 - can detect rules of the form $X \rightarrow Y$ (e.g., beer \rightarrow diapers) from a set of sales transactions $D = \{t_1, t_2, \ldots, t_n\}$
 - measure of quality: support, confidence
 - used e.g. as a threshold to cut off unimportant rules
 - let $\sigma(X) = \frac{|\{x | x \subseteq t_i, t_i \in D\}|}{|D|}$
 - support $= \frac{\sigma(X \cup Y)}{|D|}$, confidence $= \frac{\sigma(X \cup Y)}{\sigma(X)}$
Recommendation based on Association Rule Mining

- **Simplest approach**
 - transform 5-point ratings into binary ratings (1 = above user average)

- **Mine rules such as**
 - Item1 → Item5
 - support (2/4), confidence (2/2) (without Alice)

- **Make recommendations for Alice (basic method)**
 - Determine "relevant" rules based on Alice's transactions (the above rule will be relevant as Alice bought Item1)
 - Determine items not already bought by Alice
 - Sort the items based on the rules' confidence values

- **Different variations possible**
 - dislike statements, user associations ..
Probabilistic methods

- Basic idea (simplistic version for illustration):
 - given the user/item rating matrix
 - determine the probability that user Alice will like an item \(i \)
 - base the recommendation on such these probabilities

- Calculation of rating probabilities based on Bayes' Theorem
 - How probable is rating value "1" for Item5 given Alice's previous ratings?
 - Corresponds to conditional probability \(P(\text{Item5}=1 \mid X) \), where
 - \(X = \) Alice's previous ratings = \{Item1 =1, Item2=3, Item3= ... \}
 - Can be estimated based on Bayes' Theorem

\[
P(Y \mid X) = \frac{P(X \mid Y) \times P(Y)}{P(X)}
\]

\[
P(Y \mid X) = \frac{\prod_{i=1}^{q} P(X_i \mid Y) \times P(Y)}{P(X)}
\]

- Assumption: Ratings are independent (?)
Calculation of probabilities in simplistic approach

<table>
<thead>
<tr>
<th></th>
<th>Item1</th>
<th>Item2</th>
<th>Item3</th>
<th>Item4</th>
<th>Item5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>User1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>User2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>User3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
X = (\text{Item1}=1, \text{Item2}=3, \text{Item3}=\ldots)
\]

\[
P(X|\text{Item5}=1) = P(\text{Item1}=1|\text{Item5}=1) \times P(\text{Item2}=3|\text{Item5}=1) \\
\times P(\text{Item3}=3|\text{Item5}=1) \times P(\text{Item4}=2|\text{Item5}=1) \\
= \frac{2}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \approx 0.125
\]

\[
P(X|\text{Item5}=2) = P(\text{Item1}=1|\text{Item5}=2) \times P(\text{Item2}=3|\text{Item5}=2) \\
\times P(\text{Item3}=3|\text{Item5}=2) \times P(\text{Item4}=2|\text{Item5}=2) \\
= \frac{0}{0} \times \cdots \times \frac{0}{0} \times \cdots = 0
\]

- More to consider
 - Zeros (smoothing required)
 - like/dislike simplification possible
Practical probabilistic approaches

- **Use a cluster-based approach** (Breese et al. 1998)
 - assume users fall into a small number of subgroups (clusters)
 - Make predictions based on estimates
 - probability of Alice falling into cluster c
 - probability of Alice liking item i given a certain cluster and her previous ratings
 - $P(C = c, v_1, \ldots, v_n) = P(C = c) \prod_{i=1}^{n} P(v_i | C = c)$
 - Based on model-based clustering (mixture model)
 - Number of classes and model parameters have to be learned from data in advance (EM algorithm)

- **Others:**
 - Bayesian Networks, Probabilistic Latent Semantic Analysis,

- **Empirical analysis shows:**
 - Probabilistic methods lead to relatively good results (movie domain)
 - No consistent winner; small memory-footprint of network model
Slope One predictors (Lemire and Maclachlan 2005)

- Idea of Slope One predictors is simple and is based on a *popularity differential* between items for users

- Example:

<table>
<thead>
<tr>
<th></th>
<th>Item1</th>
<th>Item5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>User1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- $p(\text{Alice, Item5}) = 2 + (2 - 1) = 3$

- Basic scheme: Take the average of these differences of the co-ratings to make the prediction

- In general: Find a function of the form $f(x) = x + b$
 - That is why the name is "Slope One"
RF-Rec predictors (Gedikli et al. 2011)

- **Idea:** Take rating frequencies into account for computing a prediction

- **Basic scheme:** $\hat{r}_{u,i} = \arg \max_{v \in R} f_{user}(u, v) \times f_{item}(i, v)$
 - R: Set of all rating values, e.g., $R = \{1, 2, 3, 4, 5\}$ on a 5-point rating scale
 - $f_{user}(u, v)$ and $f_{item}(i, v)$ basically describe *how often* a rating v was assigned by user u and to item i resp.

- **Example:**

<table>
<thead>
<tr>
<th></th>
<th>Item1</th>
<th>Item2</th>
<th>Item3</th>
<th>Item4</th>
<th>Item5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User1</td>
<td>2</td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>User2</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>User3</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>User4</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>User5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

- $p(Alice, Item3) = 1$
2008: *Factorization meets the neighborhood: a multifaceted collaborative filtering model*, Y. Koren, ACM SIGKDD

- **Stimulated by work on Netflix competition**
 - Prize of $1,000,000 for accuracy improvement of 10% RMSE compared to own Cinematch system
 - Very large dataset (~100M ratings, ~480K users, ~18K movies)
 - Last ratings/user withheld (set K)

- **Root mean squared error metric optimized to 0.8567**

- **Metrics measure error rate**
 - Mean Absolute Error (MAE) computes the deviation between predicted ratings and actual ratings

 \[
 MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|
 \]

 - Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation

 \[
 RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2}
 \]
2008: *Factorization meets the neighborhood: a multifaceted collaborative filtering model*, Y. Koren, ACM SIGKDD

- Merges neighborhood models with latent factor models

- Latent factor models
 - good to capture weak signals in the overall data

- Neighborhood models
 - good at detecting strong relationships between close items

- Combination in one prediction single function
 - Local search method such as stochastic gradient descent to determine parameters
 - Add penalty for high values to avoid over-fitting

\[
\hat{r}_{ui} = \mu + b_u + b_i + p_u^T q_i
\]

\[
\min_{p_u, q_i, b_u, b_i} \sum_{(u, i) \in K} (r_{ui} - \mu - b_u - b_i - p_u^T q_i)^2 + \lambda (\|p_u\|^2 + \|q_i\|^2 + b_u^2 + b_i^2)
\]
Summarizing recent methods

- Recommendation is concerned with learning from noisy observations \((x, y)\), where \(f(x) = \hat{y} \sum_{\hat{y}} (\hat{y} - y)^2\) has to be determined such that is minimal.

- A huge variety of different learning strategies have been applied trying to estimate \(f(x)\)
 - Non parametric neighborhood models
 - MF models, SVMs, Neural Networks, Bayesian Networks,...
Collaborative Filtering Issues

- **Pros:**
 - well-understood, works well in some domains, no knowledge engineering required

- **Cons:**
 - requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results

- **What is the best CF method?**
 - In which situation and which domain? Inconsistent findings; always the same domains and data sets; differences between methods are often very small (1/100)

- **How to evaluate the prediction quality?**
 - MAE / RMSE: What does an MAE of 0.7 actually mean?
 - Serendipity (novelty and surprising effect of recommendations)
 - Not yet fully understood

- **What about multi-dimensional ratings?**
The Google News personalization engine
Google News portal (1)

- Aggregates news articles from several thousand sources
- Displays them to signed-in users in a personalized way
- Collaborative recommendation approach based on
 - the click history of the active user and
 - the history of the larger community
- Main challenges
 - Vast number of articles and users
 - Generate recommendation list in real time (at most one second)
 - Constant stream of new items
 - Immediately react to user interaction
- Significant efforts with respect to algorithms, engineering, and parallelization are required
Google News portal (2)

- Pure memory-based approaches are not directly applicable and for model-based approaches, the problem of continuous model updates must be solved
- A combination of model- and memory-based techniques is used
- Model-based part: Two clustering techniques are used
 - Probabilistic Latent Semantic Indexing (PLSI) as proposed by (Hofmann 2004)
 - MinHash as a hashing method
- Memory-based part: Analyze story co-visits for dealing with new users
- Google's MapReduce technique is used for parallelization in order to make computation scalable
Literature (1)

- [Adomavicius and Tuzhilin 2005] Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering 17 (2005), no. 6, 734–749

Literature (2)

- [Lemire and Maclachlan 2005] Slope one predictors for online rating-based collaborative filtering, Proceedings of the 5th SIAM International Conference on Data Mining (SDM ’05) (Newport Beach, CA), 2005, pp. 471–480